
Comparison of Grammar-Based and Statistical Language Models
Trained on the Same Data

Beth Ann Hockey and Manny Rayner
Mail Stop T27A-2

UCSC/ICSI/NASA Ames Research Center
Moffett Field, CA 94035

bahockey@email.arc.nasa.gov, mrayner@riacs.edu

Abstract

This paper compares performance of a linguistically
motivated probabilistic context free grammar-based (L-
PCFG) language model against a base line class n-
gram-based language model on data from a medium vo-
cabulary application, the Clarissa International Space
Station procedure navigator domain. The Regulus
open source package makes this possible by provid-
ing a trainable method for constructing domain specific
grammars with logical-form semantics. We construct
L-PCFG-based and n-gram language models from the
same corpus for comparison, and find that the L-PCFG-
based language model provides better performance in
this domain. The best n-gram version has a semantic er-
ror rate of 9.6%, while the best GLM version has an er-
ror rate of 6.0%. Part of this advantage is accounted for
by the superior WER and Sentence Error Rate (SER) of
the GLM (WER 7.42% versus 6.27%, and SER 12.41%
versus 9.79%). The rest is most likely accounted for
by the fact that the L-PCFG architecture is able to use
logical-form-based features, which permit tighter inte-
gration of recognition and semantic interpretation.

Introduction
The test domain for this paper is the Clarissa procedure nav-
igator (Rayner & Hockey 2004; Clarissa 2005), a spoken
dialogue system designed to assist astronauts on the Interna-
tional Space Station (ISS) in executing the type of detailed
procedures that constitute much of their workload. This sys-
tem, installed on the ISS in January 2005, provides hands-
and eyes-free navigation of procedures through a mixed-
initiative dialogue interface.

Speech recognition for spoken dialogue systems poses
problems different from those that arise in large vocabulary
applications. In novel command and control domains, there
is typically no data at the start of the project; even with data
collection efforts, the amount of training data will always be
modest. The important metric is performance on task rele-
vant semantic interpretation; word and sentence error rates
are interesting only to the extend they correlate with seman-
tic accuracy. Any type of spoken dialogue system has to
steer a course between two basic speech recognition and lan-
guage processing strategies. At one end, the system can try

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to adapt to the user. The implementors collect data repre-
senting what users would ideally like to be able to say, after
which the system is configured to perform as well as possi-
ble on the sample data. At the other end of the scale, the bur-
den of adaptation is put on the user: the system is designed
to offer a predefined range of coverage, which the user is
required to learn. In practice, of course, some compromise
between these two positions is normal.

For the Clarissa domain, astronauts, the target users, are
far from being typical users; they are highly intelligent, will-
ing to invest time in learning to use the system, and in most
cases come from an aeronautics background where use of
controlled language is the norm. For this kind of user, a de-
signed coverage approach has clear attractions; performance
for expert users is better (Knight et al. 2001), and it is eas-
ier to reconfigure the system in response to changes in the
specification. CommandTalk (Stent et al. 1999) is another
example of a successful command and control application
where designed coverage worked well with a user base fa-
miliar with controlled language.

While these factors biased us in favor of the rule-based
language modeling approach that the Clarissa system uses
for speech recognition, we wanted to implement a frame-
work which would allow us to compare our methods against
more standard approaches based on class n-gram language
modeling and phrase-spotting. We reasoned that this both
would be interesting in its own right, and would also retain
the option of switching from the rule-based framework to
the n-gram/phrase-spotting one if that later appeared jus-
tified. The Regulus (Rayner, Hockey, & Dowding 2003;
Regulus 2005) and Alterf (Rayner & Hockey 2003) plat-
forms, which we have developed under Clarissa and other
earlier projects, are designed to meet these requirements

The basic idea behind the Regulus platform is to construct
linguistically motivated probabilistic context free grammar
(L-PCFG) language models, using example-based methods
driven by small corpora. Since, under this approach, gram-
mar construction is a corpus-driven process, the same cor-
pora can also be used to build n-gram language models, fa-
cilitating a direct comparison between the two methodolo-
gies. On its own, however, Regulus only permits compar-
ison at the level of recognition strings. Alterf extends the
paradigm to the semantic level, by providing a uniform train-
able semantic interpretation framework which can work on

either surface strings or logical forms.
Exploiting the properties of Regulus and Alterf, this paper

presents an evaluation of the Clarissa system’s speech un-
derstanding component, and describes a methodologically
sound comparison between the implemented rule-based ar-
chitecture and a plausible n-gram/phrase-spotting counter-
part. The structure of the paper provides in the the next
two sections an overview of Regulus and Alterf respectively.
Then, we describe how we have used Regulus and Alterf in
Clarissa. Next, we evaluate language understanding perfor-
mance, and the final section concludes.

Regulus
The core functionality provided by the Regulus Open Source
platform is compilation of typed unification grammars into
annotated context-free grammar language models expressed
in Nuance Grammar Specification Language (GSL) notation
(Nuance 2005). GSL language models can be converted into
runnable speech recognizers by invoking the Nuance Toolkit
compiler utility, so the net result is the ability to compile a
unification grammar into a speech recognizer.

Experience with rule-based spoken dialogue systems
shows that there is usually a substantial overlap between the
structures of grammars for different domains. This is hardly
surprising, since they all ultimately have to model general
facts about the linguistic structure of English and other nat-
ural languages. It is consequently natural to consider strate-
gies which attempt to exploit the overlap between domains
by building a single, general grammar valid for a wide va-
riety of applications. A grammar of this kind will probably
offer more coverage (and hence lower accuracy) than is de-
sirable for any given specific application. It is however fea-
sible to address the problem using corpus-based techniques
which extract a specialized version of the original general
grammar.

Regulus implements a version of the grammar specializa-
tion scheme which extends the Explanation Based Learning
method described in (Rayner, Hockey, & Dowding 2002).
There is a general unification grammar, loosely based on the
Core Language Engine grammar for English (Pulman 1992),
which has been developed over the course of about ten indi-
vidual projects. The semantic representations produced by
the grammar are in a simplified version of the Core Lan-
guage Engine’s Quasi Logical Form notation (van Eijck &
Moore 1992).

A specialized Nuance grammar is created from the gen-
eral grammar in the following processing stages:

1. The training corpus is converted into a “treebank” of
parsed representations. This is done using a left-corner
parser representation of the grammar.

2. The treebank is used to produce a specialized grammar in
Regulus format, using the EBL algorithm (van Harmelen
& Bundy 1988; Rayner 1988).

3. The final specialized grammar is compiled into a Nuance
GSL grammar.

The training corpus is then used a second time to perform
probabilistic training on the resulting GSL language model

using the Nuance compute-grammar-probs utility,
and the resulting probabilistic context free (PCFG) version
of the language model is compiled into a recognition pack-
age using the nuance-compile utility.

Alterf
Alterf is another Open Source toolkit, whose purpose is to
allow a clean combination of rule-based and corpus-driven
processing in the semantic interpretation phase. Alterf
characterises semantic analysis as a task slightly extending
the “decision-list” classification algorithm (Yarowsky 1994;
Carter 2000). We start with a set of semantic atoms, each
representing a primitive domain concept, and define a se-
mantic representation to be a non-empty set of semantic
atoms. For example, in Clarissa we represent the utterances

please speak up
set an alarm for five minutes from now
no i said go to the next step

respectively as

{increase volume}
{set alarm, 5, minutes}
{correction, next step}

where increase volume, set alarm, 5, minutes,
correction and next step are semantic atoms. As
well as specifying the permitted semantic atoms themselves,
we also define a target model which for each atom speci-
fies the other atoms with which it may legitimately combine.
Thus here, for example, correction may legitimately
combine with any atom, but minutes may only combine
with correction, set alarm or a number.

Training data consists of a set of utterances, in either text
or speech form, each tagged with its intended semantic rep-
resentation. We define a set of feature extraction rules, each
of which associates an utterance with zero or more features.
Feature extraction rules can carry out any type of processing.
In particular, they may involve performing speech recog-
nition on speech data, parsing on text data, application of
hand-coded rules to the results of parsing, or some combi-
nation of these. Statistics are then compiled to estimate the
probability p(a | f) of each semantic atom a given each
separate feature f , using the standard formula

p(a | f) = (Na
f + 1)/(Nf + 2)

where Nf is the number of occurrences in the training data
of utterances with feature f , and Na

f is the number of occur-
rences of utterances with both feature f and semantic atom
a.

The decoding process follows (Yarowsky 1994) in as-
suming complete dependence between the features. Note
that this is in sharp contrast with the Naive Bayes classifier
(Duda, Hart, & Stork 2000), which assumes complete inde-
pendence. Of course, neither assumption can be true in prac-
tice; however, as argued in (Carter 2000), there are good rea-
sons for preferring the dependence alternative as the better
option in a situation where there are many features extracted
in ways that are likely to overlap.

We are given an utterance u, to which we wish to assign
a representation R(u) consisting of a set of semantic atoms,

together with a target model comprising a set of rules defin-
ing which sets of semantic atoms are consistent. The decod-
ing process proceeds as follows:

1. Initialise R(u) to the empty set.

2. Use the feature extraction rules and the statistics compiled
during training to find the set of all triples 〈f, a, p〉 where
f is a feature associated with u, a is a semantic atom,
and p is the probability p(a | f) estimated by the training
process.

3. Order the set of triples by the value of p, with the largest
probabilities first. Call the ordered set T .

4. Remove the highest-ranked triple 〈f, a, p〉 from T . Add a
to R(u) iff the following conditions are fulfilled:

• p ≥ pt for some pre-specified threshold value pt.
• Addition of a to R(u) results in a set which is consis-

tent with the target model.

5. Repeat step (4) until T is empty.

Intuitively, the process is very simple. We just walk down
the list of possible semantic atoms, starting with the most
probable ones, and add them to the semantic representation
we are building up when this does not conflict with the con-
sistency rules in the target model. We stop when the atoms
suggested are too improbable, that is, have probabilities be-
low a specified threshold.

Using Regulus and Alterf in Clarissa
We now describe the details of how we have used the Reg-
ulus and Alterf platforms in Clarissa. The Clarissa Regulus
grammar is composed of the general Regulus grammar and
the general function-word lexicon, together with a Clarissa-
specific domain lexicon containing 313 lemmas, which re-
alise 857 surface lexical rules. (Most of the difference is
accounted for by verbs, which in the Regulus grammar have
five surface forms). Table 1 summarizes the data for the
domain-specific lexicon.

The general Regulus grammar, the Clarissa lexicon and
the Clarissa training examples are used to create a grammar
tailored to the Clarissa domain through the grammar special-
ization process already outlined. This domain specific gram-
mar is then compiled into a Nuance compatible grammar
which is used to build the runtime recognition component.
The training corpus we use for the current version of the
system contains 3297 examples; of these, 1349 have been
hand-constructed to represent specific words and construc-
tions required for the application, while the remaining 1953
are transcribed examples of utterances recorded during sys-
tem development.

The parameters guiding the grammar specialization pro-
cess have been chosen to produce a fairly “flat” grammar,
in which many noun-phrases become lexical items. This re-
flects the generally stereotypical nature of language in the
Clarissa domain. The specialized unification grammar con-
tains 491 lexical and 162 non-lexical rules; Table 2 shows
examples of specialized grammar rules, together with as-
sociated frequencies of occurrence in the training corpus.

Surface
“no i said go to step five point three”

Logical form

[[interjection, correction],
[imp,
form(imperative,

[[go,
term(pro, you, []),
[to, term(null, step,
[[number,

[decimal,5,3]]]
)]]])]]

Alterf output
[correction, go to, [decimal,5,3]]

Dialogue move
correction(go to([decimal,5,3]))

Figure 1: Examples showing different levels of representa-
tion for a Clarissa utterance. We show the surface words, the
general logical form produced by the Regulus grammar and
derived recognizer, the list of semantic atoms produced by
Alterf, and the dialogue move.

The specialized grammar is compiled into a PCFG lan-
guage model containing 427 non-terminal symbols and 1999
context-free productions.

On a 1.7GHz P4 laptop running SICStus 3.8.5, the whole
compilation process takes approximately 55 minutes. This
divides up as about 30 minutes to parse the training cor-
pus, 10 minutes to extract the specialized grammar from the
parsed treebank, 10 minutes to perform unification gram-
mar to CFG language model compilation, and 5 minutes for
probabilistic grammar training and Nuance recognizer com-
pilation.

Semantic representations produced by the Clarissa gram-
mar are general domain-independent logical forms. By con-
struction, the same representations are produced by the spe-
cialized grammar and the derived recognizer. The Alterf
package is used to convert these general representations into
unordered lists of semantic atoms; a final post-processing
stage transforms Alterf output into the “dialogue moves”
used as input by the dialogue manager. Figure 1 shows ex-
amples of these different levels of representation.

Recall that the Alterf algorithm requires definition of fea-
ture extraction rules, so that it can then trained to acquire
associations between extracted features and cooccurring se-
mantic atoms. We have experimented with three different
kinds of feature extraction rules: surface N-grams, hand-
coded surface patterns and hand-coded logical form pat-
terns.

Surface N-gram features are the simplest type. First, the
recognized string is tokenised using a shallow parser and
a phrase grammar that identifies numbers, times, durations
in minutes and seconds, and a few other similar types of

POS #Entries Examples Example contexts
Lemmas Words

Verb 129 645 continue “continue”
go “go to step three”
put “put a voice note on step six”

Noun 99 127 caution “read caution before step eleven”
alarm “list alarms”
mode “enter challenge verify mode”

Number 25 25 zero fiver “set alarm for ten zero fiver”
Interjection 20 20 copy “copy go to step three”
Preposition 15 15 on “give me help on navigation”
Adjective 15 15 skipped “list skipped steps”
Adverb 10 10 louder “speak louder”
Total 313 857

Table 1: Summary information for Clarissa lexicon. For each part of speech, we give the number of lexicon entries, example
words, and example contexts.

expression. Bigrams and trigrams are then extracted from
the tokenised string. Thus for example the string “go to step
five point three” would be tokenised as

[*start*, go, to, step,
[decimal,5,3], *end*]

and yields the trigrams

[*start*, go, to]
[go, to, step],
[to, step, [decimal,5,3]]
[step, [decimal,5,3], *end*]

When calculating associations, Alterf replaces numbers and
similar constructs with generic tokens: after this replace-
ment, the trigrams above become

[*start*, go, to]
[go, to, step],
[to, step, *decimal_number*]
[step, *decimal_number*, *end*]

Thus in this case Alterf will not derive an association
between the trigram [to, step, [decimal,5,3]]
and the semantic atom [decimal,5,3], but
rather between the generic trigram [to, step,
decimal number] and the generic semantic atom
decimal number.

Unsurprisingly, we discovered that surface N-gram fea-
tures were not particularly reliable. We then implemented
two more sets of feature extraction rules, which defined
different types of hand-coded patterns. The first set con-
sists of conventional phrasal patterns over the tokenised
recognition string, written in a simple matching language
that encodes regular expressions over tokens. The sec-
ond set specifies structural patterns in the logical form, en-
coded as underspecified Prolog terms that are matched, us-
ing unification, against all subterms in the LF. Examples
of regular-expression and logical-form-based patterns are
shown in Figure 2. The version of Clarissa described here
has 216 regular-expresssion patterns and 305 logical-form-
based patterns. The patterns have been developed and de-
bugged using the 3297 utterance training corpus: on this

corpus, each set of patterns has a classification error rate of
about 0.5%.

Evaluating speech understanding performance
Having described the speech understanding architecture, we
now present an evaluation. There are a large number of types
of experiment which we could potentially have carried out.
Given limited resources, we decided to focus on two main
questions:

• How does the Regulus L-PCFG-based framework com-
pare against a more conventional framework using a class
N-gram language model and a set of regular expression
phrase-spotting rules?

• How do different types of features compare against each
other? In particular, are logical-form-based patterns more
effective than regular-expression-based or N-gram pat-
terns, and is it useful to combine several types of pattern?

The next issue to resolve is the choice of appropriate per-
formance metrics and test data. Given that we are essentially
interested in speech understanding performance, the obvi-
ous metric is semantic error rate, by which we will specifi-
cally mean the proportion of utterances which fail to receive
a correct semantic interpretation after Alterf processing. For
completeness, we will also present figures for Word Error
Rate (WER) and Sentence Error Rate (SER).

The choice of appropriate test data was unfortunately not
straightforward. Ideally, we would have liked to test on
astronaut subjects, but the virtual impossibility of getting
significant quantities of astronaut time forced us to adopt
a compromise. We compared the small amount of astro-
naut data we were able to obtain against the results of a pi-
lot study using naive subjects with no previous exposure to
the system, but this revealed a serious mismatch. The astro-
nauts were very familiar both with the procedure-following
task and with use of controlled language, and moreover had
a strong motivation to learn to use the system; the naive sub-
jects had neither the relevant background, nor any particular
reason to want to acquire the relevant skills. The perfor-

Rule Freq Example
S --> V NP 606 “[delete] [the voice note]”

NP --> NUMBER 511 “[one hundred thirty seven]”
ADJ --> next 508 “no i said [next]”

NP --> step NUMBER 481 “play voice note on [step four]”
SIGMA --> INTERJECTION NP 344 “[no i meant] [four point one]”

S --> V P NP 321 “[go] [to] [row one]”
S --> V NP POST MODS 295 “[set] [timer] [for two minutes]”

NUMBER --> NUMBER point NUMBER 278 “[twenty five] [point] [nine]”
S --> V 259 “[speak up]”

POST MODS --> P NP 228 “set alarm [at] [three zero six]”
V --> go back 108 “[go back]”
S --> V NP NP 78 “[show] [me] [figure one]”

NP --> the voice note 40 “cancel [the voice note]”
S --> V P NP POST MODS 28 “[go] [to] [the note] [before step one]”
NP --> what procedure 12 “[what procedure] are we on”

S --> NP V NP 11 “[what] [is] [the current step]”
V --> exit 6 “[exit] review mode”

NP --> value 3 “[value] is undefined”

Table 2: Examples of rules in specialized version of Clarissa grammar. For each rule we give the context-free skeleton, the
frequency of occurrence in the training corpus, and an example.

mance figures reflected this imbalance, with the astronauts
scoring enormously better than nearly all of the naive sub-
jects.

We obtained a much closer fit against the data recorded
by system developers during the course of the project. Al-
though the developers know the system a little better than the
astronaut users, our intuitive observation was that the differ-
ence was not large, and that the astronauts would probably
catch up after only a relatively short period of use. The fig-
ures below are thus based on a sample of 8158 in-domain
utterances (23369 words) collected and transcribed during
the course of the project. By “in-domain”, we mean here
that the utterances expressed commands meaningful in the
context of the Clarissa task, and that the system should ide-
ally have responded to them. The data had not previously
been used for development purposes, and can be considered
as unseen.

In order to compare the Regulus-constructed L-PCFG-
based recognizer with an n-gram-based recognizer architec-
ture, we used the Nuance SayAnything c© tool and the same
3297 utterance training set to build a standard class n-gram
model. We defined three classes, for numbers, times, and
for objects that could be displayed using the “show” com-
mand. A trigram model was constructed under the default
SayAnything c© process, using the training sentences to train
both the Good-Turing discounting algorithm and the trigram
model. Low probability n-grams were pruned.

Raw recognition performance figures for the two recog-
nizers, measured in terms of WER and SER, are shown in
Table 3.

The main experimental results are presented in Table 4.
Here, we contrast speech understanding performance for the
Regulus-based recognizer and the class N-gram recognizer,
using several different sets of Alterf features. For complete-

Recognizer WER SER
L-PCFG 6.27% 9.79%
NGRAM 7.42% 12.41%

Table 3: WER and SER for the Regulus-based recog-
nizer (L-PCFG) and a conventional class N-gram recognizer
(NGRAM) trained on the same data.

ness, we also present results for simulated perfect recogni-
tion, i.e. using the reference transcriptions. We used six dif-
ferent sets of Alterf features:
N-grams: N-gram features only.

LF: Logical-form-based patterns only.

RegExpr: Regular-expression-based patterns only.

RegExpr + LF: Both regular-expression-based and
logical-form based patterns.

RegExpr + N-grams: Both regular-expression-based and
N-gram features.

RegExpr + LF + N-grams: All types of features.
As can be seen, the L-PCFG performs very considerably bet-
ter than the NGRAM. The best NGRAM version, S-3, has
a semantic error rate of 9.6%, while the best L-PCFG ver-
sion, G-4 has an error rate of 6.0%, a relative improvement
of 37%. Part of this is clearly due to the fact that the L-PCFG
has better WER and SER than the NGRAM. However, Ta-
ble 3 shows that the relative improvement in WER is only
15% (7.42% versus 6.27%), and that in SER is 21% (12.41%
versus 9.79%). The larger improvement by the L-PCFG ver-
sion at the level of semantic understanding is most likely
accounted for by the fact that it is able to use logical-form-
based features, which are not accessible to the NGRAM ver-
sion. Although logical-form-based features do not appear

Regular-expression-based patterns

% ‘‘decrease’’ or ‘‘reduce’’ followed by ‘‘volume’’
% indicates the atom decrease_volume
surface_pattern([decrease/reduce,’...’,volume], decrease_volume).

% ‘‘back’’ not following ‘‘go’’ and at the end
% indicates the atom previous_line
surface_pattern([not_word(go),back,’*end*’], previous_line).

% ’’put’’ followed by ‘‘voice note’’
% indicates the atom record_voice_note
surface_pattern([put,’...’,voice,note], record_voice_note).

Logical-form-based patterns

% ‘‘decrease’’ or ‘‘reduce’’ with object an NP whose head is ‘‘volume’’
% indicates the atom decrease_volume
lf_pattern([decrease,_,term(_,volume,_)],decrease_volume).
lf_pattern([reduce,_,term(_,volume,_)],decrease_volume).

% ‘‘back’’ used as an interjection
% indicates the atom previous_line
lf_pattern([interjection,back],previous_line,back).

% ‘‘put’’ with object an NP whose head is ‘‘voice_note’’
% indicates the atom record_voice_note
lf_pattern([put,_,term(_,voice_note,_),_],record_voice_note).

Figure 2: Examples of regular-expression-based and logical-form-based patterns used in Clarissa.

to be intrinsically more accurate than string-based features
(contrast rows T-2 and T-3), the fact that they allow tighter
integration between semantic understanding and language
modelling is intuitively advantageous.

It is interesting to note that the combination of logical-
form-based features and string-based features outperforms
logical-form-based features alone (rows G-4 and G-5). Al-
though the difference is small (6.0% versus 6.3%), a pair-
wise comparison shows that it is significant at the 1% level
according to the McNemar sign test. There is no clear
evidence that N-gram features are very useful. This sup-
ports the standard folk-lore result that semantic understand-
ing components for command and control applications are
more appropriately implemented using hand-coded phrase-
spotting patterns than general associational learning tech-
niques.

Finally, Table 5 presents a breakdown of speech under-
standing performance, by utterance length, for the best L-
PCFG-based and NGRAM-based versions of the system.
There are two main points we want to make here. First,
speech understanding performance remains respectable even
for the longer utterances; second, the performance of the L-
PCFG-based version is consistently better than that of the
NGRAM-based version for all utterance lengths.

Conclusion
For this kind of task, there is reasonable evidence that L-
PCFG-based recognition methods work better than n-gram

ones. The extra robustness of n-gram methods does not ap-
pear to outweigh the fact that the L-PCFG-based approach
permits tighter integration of recognition and semantic inter-
pretation. Speech understanding performance was very sub-
stantially better with the L-PCFG-based method. We were
able to make a clear comparison between the two meth-
ods because we used a carefully constructed methodology
which built the L-PCFG-based recognizer from a corpus, but
there is no reason to believe that other ways of building the
grammar-based recogniser would have led to inferior results.

It is encouraging that our results show a similar pat-
tern to previous work on using structured linguistic infor-
mation in language modeling e.g. (Wang & Harper 2002;
Chelba & Jelinek 1998), particularly given substantial dif-
ferences in the task, (large vocabulary versus restricted lan-
guage), domain (WSJ versus command and control) and
metrics (WER and sentence accuracy versus semantic accu-
racy). It appears that the advantages of incorporating struc-
tured linguistic information in the language model obtain for
a variety of speech recognition tasks, and become even more
relevant when the measurements of performance are made
further downstream in the language processing sequence.

References
Carter, D. 2000. Choosing between interpretations. In
Rayner, M.; Carter, D.; Bouillon, P.; Digalakis, V.; and
Wirén, M., eds., The Spoken Language Translator. Cam-
bridge University Press.

Chelba, C., and Jelinek, F. 1998. Exploiting syntac-
tic structure for language modeling. In Proceedings of
COLING-ACL ’98.

Clarissa. 2005. http://www.ic.arc.nasa.gov/projects/clarissa/.
As of 6 April 2005.

Duda, R.; Hart, P.; and Stork, H. 2000. Pattern Classifica-
tion. New York: Wiley.

Knight, S.; Gorrell, G.; Rayner, M.; Milward, D.; Koeling,
R.; and Lewin, I. 2001. Comparing grammar-based and
robust approaches to speech understanding: a case study.
In Proceedings of Eurospeech 2001, 1779–1782.

Nuance. 2005. http://www.nuance.com. As of 17 May
2005.

Pulman, S. 1992. Syntactic and semantic processing. In
Alshawi, H., ed., The Core Language Engine. Cambridge,
Massachusetts: MIT Press. 129–148.

Rayner, M., and Hockey, B. 2003. Transparent combina-
tion of rule-based and data-driven approaches in a speech
understanding architecture. In Proceedings of the 10th
Conference of the European Chapter of the Association for
Computational Linguistics.

Rayner, M., and Hockey, B. 2004. Side effect free dia-
logue management in a voice enabled procedure browser.
In Proceedings of INTERSPEECH 2004.

Rayner, M.; Hockey, B.; and Dowding, J. 2002. Grammar
specialisation meets language modelling. In Proceedings
of the 7th International Conference on Spoken Language
Processing (ICSLP).

Rayner, M.; Hockey, B.; and Dowding, J. 2003. An
open source environment for compiling typed unification
grammars into speech recognisers. In Proceedings of the
10th Conference of the European Chapter of the Associa-
tion for Computational Linguistics (interactive poster and
demo track).

Rayner, M. 1988. Applying explanation-based generaliza-
tion to natural-language processing. In Proceedings of the
International Conference on Fifth Generation Computer
Systems, 1267–1274.

Regulus. 2005. http://sourceforge.net/projects/regulus/. As
of 8 January 2005.

Stent, A.; Dowding, J.; Gawron, J.; Bratt, E.; and Moore,
R. 1999. The CommandTalk spoken dialogue system. In
Proceedings of the Thirty-Seventh Annual Meeting of the
Association for Computational Linguistics, 183–190.

van Eijck, J., and Moore, R. 1992. Semantic rules for
English. In Alshawi, H., ed., The Core Language Engine.
MIT Press. 83–116.

van Harmelen, T., and Bundy, A. 1988. Explanation-based
generalization = partial evaluation (research note). Artifi-
cial Intelligence 36:401–412.

Wang, W., and Harper, M. 2002. The SuperARV language
model: Investigating the effectiveness of tightly integrating
multiple knowledge sources. In Proceedings of Empirical
Methods in Natural Language Processing.

Yarowsky, D. 1994. Decision lists for lexical ambiguity
resolution. In Proceedings of the 32nd Annual Meeting of
the Association for Computational Linguistics, 88–95.

Version Rec Features Errors
Rejected Incorrect Total

T-1 Text N-grams 7.3% 5.9% 13.2%
T-2 Text LF 3.1% 0.5% 3.6%
T-3 Text RegExpr 2.2% 0.8% 3.0%
T-4 Text RegExpr + LF 0.8% 0.8% 1.6%
T-5 Text RegExpr + LF + N-grams 0.4% 0.8% 1.2%
G-1 L-PCFG N-grams 7.4% 9.7% 17.1%
G-2 L-PCFG LF 1.4% 4.9% 6.3%
G-3 L-PCFG RegExpr 2.9% 4.8% 7.7%
G-4 L-PCFG RegExpr + LF 1.0% 5.0% 6.0%
G-5 L-PCFG RegExpr + LF + N-grams 0.7% 5.4% 6.1%
S-1 NGRAM N-grams 9.6% 11.9% 21.5%
S-2 NGRAM RegExpr 2.8% 7.4% 10.2%
S-3 NGRAM RegExpr + N-grams 1.6% 8.0% 9.6%

Table 4: Speech understanding performance for 8158 test sentences recorded during development, on 13 different configurations
of the system. The “Rec” column indicates either simulated perfect recognition (“Text”), recognition using the Regulus-derived
L-PCFG-based language model (“L-PCFG”) or recognition using a class N-gram language model (“NGRAM”). The “Features”
column indicates the Alterf features used.

Length #Utts Best L-PCFG (G-4) Best NGRAM (S-3)
WER SER SemER WER SER SemER

1 3049 5.7% 3.5% 2.5% 6.3% 4.2% 3.5%
2 1589 12.0% 12.0% 8.7% 14.6% 18.4% 14.6%
3 950 7.2% 12.8% 7.2% 10.4% 15.2% 15.4%
4 1046 7.6% 14.8% 9.9% 7.7% 15.6% 14.7%
5 354 5.7% 14.4% 9.0% 6.1% 19.8% 10.8%
6 543 2.8% 11.1% 7.2% 4.1% 15.3% 9.8%
7 231 3.0% 16.0% 3.5% 4.6% 19.5% 6.5%
8 178 4.4% 14.6% 4.5% 3.6% 16.3% 5.7%
9 174 3.9% 20.1% 9.2% 4.0% 20.7% 10.3%

Table 5: Speech understanding performance, broken down by utterance length, for the best L-PCFG-based and n-gram-based
versions of the system (cf. Table 4). Results are omitted for the small group of utterances of length 10 or more.

